General

This is a proof of concept exercise. You will build a not very pretty version of a moving part to use in your city model. This is called a Proof of Concept or POC. It gives you experience in working with the materials and connecting the electrical circuits. The version you build for your city model will look much better, but work basically the same.

All of the parts and supplies you need are in your team’s brown bag or on the table. Leave scissors, needle nose pliers, tape and other supplies on the table when you leave the room. You many want to partially disassemble your moving part so it fits in your pack, or you can just carry it around.

NOTE: The wire connections to the motor are delicate. Short wires called pigtails have been attached to the motor and have also been taped to the motor to reduce strain on the connection. When making connections to the motor, attach longer wires to the pigtails with wire nuts. Do not pick up the motor by the wires. When placing or adjusting the wires connected to the motor, hold the wires firmly between where you adjusting them and the connection. You can press on the tape on the motor that is reinforcing the connection.

Review the Parts List and Receipt before starting the exercise. (See end of instructions)

***Take the parts out of the bag and arrange them neatly on the table. ***

1. Build the tower assembly
 1.1. Place “T” Shaped Piece of cardboard on one end of Cardboard Tube. The V-Shaped notch should be located near as close to the center of the tube as possible.
 1.2. Fold cardboard overhangs the “T” over the corner of the tube and tape the flaps securely to the tube.
 1.3. Insert axel into wheel and then insert the other end of the axel into the motor.
 1.4. Place motor onto top of tower. The axel and tire should be centered above the tower. The opposite drive side of the motor will sit in the “V” notch of the cardboard “T”.
 1.5. Extend the pigtails on the motor by using wire nuts to attach additional wire. Test the connection by touching the ends of the wire extensions to the battery. If motor works the connections are good.
 1.6. Run the extended wires through the tube.
 1.7. Set the motor in place and make sure it is firm and level.
 1.8. Bring the wires out through the slit in the bottom of the tube.

2. Mount the tower and wire the circuit
 2.1. Use duct tape to fasten the tower assembly in the upright position to the large cardboard base
 2.2. Wire the, motor, batteries and switch in a series circuit. See schematic diagram. Wires with clips will attach to the on/off switch. Use wire nuts to connect the remaining wires.
 2.3. Insert the battery and test the circuit. If the motor does not turn, check all of the wire nut connections. If you cannot find the problem, ask one of the engineers for assistance.

3. Final Assembly
 3.1. Layout the wires in an orderly manner on the cardboard base and fasten them with tape.
 3.2. Create a loop in one end of the metal wire and fasten it to the top of the wheel assembly with tape and twisting as necessary.
 3.3. Cut out the outline of a flying vehicle from the outlines supplied or make up your own shape. Fasten to the end of the wire with a small piece of tape.
 3.4. Straighten out the metal wire and make sure it extends out in a horizontal or above position.
 3.5. Turn on the motor and watch the plane circle the tower.
4. **Things to experiment with and make the part better**

4.1. Build a more realistic looking plane. Perhaps a 3d printed futuristic quadcopter.

4.2. Use a different type of wire to connect the plane to the motor. Make it less visible by painting it black or a color that blends with the back ground of your city.

4.3. Attach the wire to the motor directly (perhaps with a hot glue gun) to the motor so you don’t need the wheel and axel.

4.4. Use a building in your city instead of the tube to support the structure.

4.5. Decorate the assembly

Parts List and Receipt for Parts

<table>
<thead>
<tr>
<th>Unit Cost</th>
<th>Qty</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoEC DC Gear Motor</td>
<td>$3.25</td>
<td>1</td>
</tr>
<tr>
<td>Wire Connectors</td>
<td>$0.04</td>
<td>5</td>
</tr>
<tr>
<td>AAA Batteries</td>
<td>$0.40</td>
<td>1</td>
</tr>
<tr>
<td>AMPATH Battery Holders</td>
<td>$0.54</td>
<td>1</td>
</tr>
<tr>
<td>Switch</td>
<td>$0.47</td>
<td>1</td>
</tr>
<tr>
<td>Wheel and Axel</td>
<td>$1.00</td>
<td>1</td>
</tr>
<tr>
<td>Hook up wire and suspension wire</td>
<td>$0.00</td>
<td>2</td>
</tr>
<tr>
<td>Cardboard base and top</td>
<td>$0.00</td>
<td>1</td>
</tr>
<tr>
<td>Cardboard tube</td>
<td>$0.00</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tower Plane